Microbes living in a toxic volcanic lake could hold clues to life on Mars
Researchers at 蜜桃传媒破解版下载 have discovered microbes living in a toxic volcanic lake that may rank as one of the harshest environments on Earth. Their findings, , could guide scientists looking for signs of ancient life on Mars.
The team, led by 蜜桃传媒破解版下载 Associate Professor Brian Hynek, braved second-degree burns, sulfuric acid fumes and the threat of eruptions to collect samples of water from the aptly-named Laguna Caliente. Nestled in Costa Rica鈥檚 Po谩s Volcano, this body of water is 10 million times more acidic than tap water and can reach near boiling temperatures. It also resembles the ancient hot springs that dotted the surface of early Mars, Hynek said.
The Costa Rican lake supports living organisms鈥攂ut only one. Hynek and his colleagues found microbes belonging to just a single species of bacteria in the lake water, a rock-bottom level of diversity.
鈥淓ven in an extremely harsh environment, there can still be life,鈥 said Hynek of the and Department of Geological Sciences. 鈥淏ut then there鈥檚 very little life. Mars was just as extreme in its early history, so we should probably not expect to find evidence of large-scale biodiversity there.鈥
Hynek, who is also the director of 蜜桃传媒破解版下载 , has spent much of his career searching for places on Earth today that look like Mars did nearly four billion years ago. At that time, liquid water was plentiful on the surface. His goal is to better understand the environments where life may have evolved on the Red Planet.
It鈥檚 a hard task: Rampant volcanism during that period created volatile and mineral-rich pools of water, giving rise to 鈥淵ellowstones all over Mars,鈥 Hynek said.
To find comparable environments, Hynek and his colleagues have traveled to dozens of volcanoes in Iceland, Nicaragua and, most recently, Costa Rica. Laguna Caliente may not be the most extreme habitat for life on Earth, he said, but it may be among the most dynamic. Here, water temperatures can swing wildly in the span of hours, and the magma channels running under the lake kick off frequent, geyser-like eruptions.
鈥淲e鈥檙e at the limits of what life on Earth can tolerate,鈥 Hynek said. 鈥淚t鈥檚 not somewhere you want to spend a lot of time because you鈥檇 probably get covered in boiling mud and sulfur from the eruptions.鈥
To search for living organisms in this 鈥渇ringe鈥 environment, the researchers scanned samples of lake water for DNA. In research published this month in the journal Astrobiology, they found the signature of one species of bacteria belonging to the genus Acidiphilium, a group of microbes that scientists have previously seen in toxic drainage from coal mines and other harsh locations.
Even for an extreme habitat, that number was low: 鈥淚t鈥檚 not uncommon to find an environment with no life, say in a volcano that鈥檚 self-sterilizing,鈥 Hynek said. 鈥淏ut to find a single type of organism and not a whole community of organisms is very, very rare in nature.鈥
If life did evolve on Mars, he said, it might look like Laguna Caliente鈥檚 lone resident. The Red Planet, Hynek explained, doesn鈥檛 get much sunlight, so photosynthetic organisms likely wouldn鈥檛 have arisen there. Instead, he said that Martian life might have survived like the lake鈥檚 bacterium鈥攂y processing the energy from iron- or sulfur-bearing minerals, which were abundant in Mars鈥 historic hydrothermal systems.
In 2020, NASA is planning to send the to the Red Planet to hunt for fossil evidence of life. Hynek said that they should look first at the planet鈥檚 own Yellowstones: 鈥淪uch environments are probably where life first evolved on Earth. If it happened on Mars, too, then I think those are the key places to look.鈥
They are also perilous locations for Earth-based scientists. To collect vials of water from Laguna Caliente, the researchers dodged vents that shot off toxic, boiling hot steam. Laguna Caliente itself no longer exists鈥攖he lake was drained during a that began just seven days after Hynek's most recent trip there and shut down the surrounding national park.
鈥淚t鈥檚 part of the status quo for the job,鈥 Hynek said.
Co-authors on the new study include 蜜桃传媒破解版下载 undergraduate student Monique Antunovich who graduated in 2017; Karyn Rogers of the Rensselaer Polytechnic Institute in Troy, New York; Geoffroy Avard of the National University of Costa Rica; and Guillermo Alvarado of the University of Costa Rica.