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This behavior is readily observed during the alignment of cells and collagen fibers in directions
of maximum tensile stresses [5–7] and maximum effective stiffness. A key to understand these
phenomena resides in our ability to characterize how cells interact with their environment and espe-
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overall deformation has been addressed in a previous study [15]. We show here that this feature can
be naturally coupled with a model for SF remodeling to capture realistic cell behaviors. At last, the
level set method is ideal to model phenomena such as growth and evolution [24], which are inherent
in cell spreading and remodeling. The present framework, although not addressing the problem of
growth, is an important stepping stone to engaging in such study in the future.

The organization of the paper is as follows. In the next section, we give a summary of the con-
strained mixture model to characterize cell contraction; we particularly concentrate on providing
the main equations (conservation of mass and momentum) as well as a set of biologically relevant
assumptions to build realistic constitutive relations. In Section 3, the problem of the interaction
between a cell and a deformable substrate is investigated. Governing equations are derived in both
their strong and weak form, which enables a smooth transition to the finite element formulation
presented in Section 4. Section 4 then discusses the XFEM–level set approach to obtain a solution
of the cell–substrate interactions, leading to the final form of implicit, time-dependent finite element
equations. The method is then illustrated in Section 5 by presenting several experimentally moti-
vated example of cell–substrate interactions with comparison to observations. The paper finishes
with a brief summary and concluding remarks.

2. A CONSTRAINED MIXTURE MODEL OF CONTRACTILE CELLS

2.1. Continuum description of cell’s structure

The mechanosensing capability of cells is closely related to their contractile abilities. The latter
has mainly been explained in terms of the formation of a well-differentiated network of SFs that
are capable of generating forces through actomyosin interactions [14, 25, 26]. The main processes
behind cell contraction can generally be decomposed as follows: first, the assembly of SF from dis-
solved contractile units and second, the contractile capacity of SFs. On the one hand, SF assembly
and dissociation are known to be very sensitive to mechanical stimuli; mechanical force stabilizes
existing SFs and promotes the assembly of new ones [26]. On the other hand, the contractile capac-
ity of SFs is regulated by cross-bridge dynamics, which is known to be very sensitive to strain
and strain rate. The evolution of SF therefore depends on the ability of cells to sense and transmit
mechanical force from the substrate through so-called focal adhesion complexes (Figure 5) [27].
These complexes provide a physical attachment between SFs and substrate-anchoring molecules
(ligands) through cross-membrane proteins (integrins) and may be thought of as cohesion islands of
finite size between cell and substrate [28, 29]. At last, the internal structure of fibroblasts possesses
sub-membranous mechanical reinforcement, known as the cortex, which is found in the form of a
thin layer of actin fibers oriented in parallel with the membrane [9,30–32]. This component is known
to have a significant effect on the cell’s morphology and deformation by providing a non-negligible
tangential stiffness to the cell membrane [15].

From a modeling perspective, cell and substrate can be defined by two physical domains �c

and �s in their current configuration, whose boundaries are denoted by �c and �s, respectively
(Figure 1). Whereas a substrate is modeled as a purely elastic medium, a contractile cell is viewed

Figure 1. A typical cell on a substrate: the definition of domains and boundaries and a cell’s
main constituents.
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morphologies. In numerical simulations, this leads to significant issues with meshing, espe-
cially when three-dimensional shapes are considered. The presented method circumvents this
issue by defining a shape geometry using a mesh-independent level set function. We note that
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with experimental observations for similar conditions (the insets of Figure 10g–i) [60–63]. Here,
our results show that SFs are preferably generated in directions of maximum apparent stiffness,
corresponding to lines connecting adhesion islands. This can be explained as follows. In direc-
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