Interstitial transition atom impurities in silicon: electronic structure and lattice relaxation

This content has been downloaded from IOPscience. Please scroll down to see the full text. 1984 J. Phys. C: Solid State Phys. 17 6047 (http://iopscience.iop.org/0022-3719/17/34/007) View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.138.65.149 This content was downloaded on 14/07/2015 at 16:29

Please note that terms and conditions apply.

6048 U Lindefelt and A Zunger

'breathing-mode' relaxation of the surrounding lattice. Electron paramagnetic resonance (EPR) studies suggest (Ludwig and Woodbury 1962, Weber 1983) that most transition atom impurities in silicon occupy the tetrahedral interstitial (TI) site, preserving the T symmetry of the host cruetal. A brief description of the electronic structure of

ľ<u>⊢</u>

Hellmann–Feynman (HF) theorem, the force acting on the *p*th host ion is then given by

$$F_{p}(Q) = \int (-\nabla_{p} v_{ps}(|r - R_{p}|))\rho(r, Q) d^{3}r + \sum_{\mu \neq p} \frac{z_{p}^{H} z_{\mu}^{H}}{|R_{p} - R_{\mu}|^{3}} (R_{p} - R_{\mu}) + \frac{z_{p}^{H} z^{I}}{|R_{p} - R_{I}|^{3}} (R_{p} - R_{I}), \qquad (4)$$

where $z_{\mu}^{\rm H}$ denotes the valence of the host atom at site R_{μ} and $z^{\rm I}$ the valence of the interstitial impurity atom. The reason for working in the pseudopotential picture is twofold: (i) it simplifies the calculation of a considerably and (ii) the arrors in the force.

ľ	
1	
Į	
É	
,	
_	
1	
<u>.</u>	
-	
-	
e.	
5	
(
<u>م</u> بر	

6050 U Lindefelt and A Zunger

where $K_l^{\alpha\lambda}(\hat{r})$ denotes a Kubic harmonic of order *l* transforming as the λ th partner in the α th irreducible representation of the group T_d. If we define the l = 1 projection $n^{(p)}(r)$

	A 41 1	مىرى بىرىغان بىر ق	1	1, 1, 1,	<u> </u>	
¥						
4						
Yu Tu						
· .						
L						
\$						
Ę						
t						
7						
ţ						
L						
F (1						
į	7	·				
×						

· · · · · · · · · · · · · · · · · · ·	1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	م ال ما ما	
			ł
			, I
			í í
			1
<u>**</u>			
			=
51.			
a			
1			
· · ·			
}			

in cartesian coordinates,

$$K_0^{a_1}(\hat{r}) = (4\pi)^{-1/2}$$
 $K_3^{a_1}(\hat{r}) = (105/4\pi)^{1/2} xyz/r^3$

$K^{a_1}(\hat{a}) = (21/16 -)\frac{1/2}{2}(2/22)^2$	$x^2 - x^2 + y^2 - x^2$	$-(r^4 + v^4 + r^4)/r^4$	(20)

		,
		1 f.
x t		
μ		
	-	
2		
1 · ·		

Figure 2. Bound-state wavefunction of e symmetry for Si: Fe in the $\pm \langle 1, 1, 0 \rangle$ directions.

indicates the part of the wavefunction which corresponds to around 50% of the normalisation integral. The wavefunction is clearly very atomic-like in the inner cc (almost

4 we show the three lowest radial components of the total charge density $\rho(r)$ (full curves) together with the radial components of the host charge density around the TI site (broken curves). In the direction towards the 1NN at (a/4)(1, 1, 1), where a is the lattice

		Therefore formed al	
9			
j.			
 };			
- I			
•			
ť			
	· · · · · · · · · · · · · · · · · · ·		
<u></u>			
1			
7			

of atoms around the impurity that are allowed to relax. In these calculations we let the first nine shells around the impurity, corresponding to 82 atoms (or all atoms within a sphere of radius 15 au around the impurity), relax freely while all other atoms are kept in their original positions. We then calculate the equilibrium configuration $O = O^*$ of $T_{\rm d}$

¥	
	,
¥\ 	
	·
<u> </u>	
<u> </u>	
<u> </u>	
<u> </u>	

·			
, 			
·			
2 2 3 3			

N,

U Lindefelt and A Zunger

4	
•	

	value and becomes positive at around $r = 1.5$ au. It turns out that this feature controls the opposite displacements of the 1NN and the 2NN. In figure 9 we have plotted the integrand in equation (13) using the $l = 1$ projected density corresponding to the 1NN. For comparison we have also plotted the integrand using a point-ion potential (broken	
<u></u>		
F		

Figure 10. Chemical regularities in the spherically symmetric component of the impurity-induced change in charge density around the first- and

_			
-			
	35		
1			
ς			
<u> </u>			
^			
7, 4			
al.			
)			

calculated analytically. We find that for small r , $n_0^{(p)}(r) = \alpha r$ where $\alpha > \alpha$	~ 0 if the atom is

ł

¥.

. •.... 1 (p)

6061