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The supercell approach to defects and alloys has circumvented the limitations of those methods that insist on
using artificially high symmetry, yet this step usually comes at the cost of abandoning the language of E versus
�k band dispersion. Here we describe a computational method that maps the energy eigenvalues obtained from
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III. CONSTRUCTING THE EFFECTIVE BAND
STRUCTURE OF A RANDOM ALLOY

We describe in this section the actual construction of an
EBS for an alloy, using the specific example of In0.1Ga0.9N, a
system that preserves, to a large extent, a recognizable band
structure (“a weakly perturbed alloy”).6 The necessary steps
for an alloy EBS determination—illustrated in Fig. 2—are the
following:

(A) Choosing the SC to be used in modeling the alloy
system, deciding on a reference PC and a set of wave vectors
{�ki} over which to construct the EBS. As we discuss in more
detail below, this set needs to be extended to include also the
additional PC wave vectors that are equivalent by symmetry
with �ki . We denote this extended set by {�kj };

(B) Decorating the SC, one random realization at a time;
(C) Relaxing the atomic positions so as to minimize the

elastic energy;
(D) Calculating the SC eigenvalues and eigenvectors;
(E) Determining the set {A(�kj ,E)} of SFs for all �kj vectors

of step (A), and calculating an internal average over those
�k vectors that are equivalent by symmetry with �ki , which
provides a subset of averaged, representative SFs {Ā(�ki,E)};
and

(F) Repeating steps (B)–(E) if different random realizations
are used. The statistically averaged SFs at each �ki are collected
into the EBS. This final product (a typical EBS) is shown in
Fig. 2(b) and will serve as a general template for the rest of
the results presented in this paper.

A. Initial settings: The supercell, the reference primitive cell,
and the set of primitive wave vectors

1. Setting up the supercell
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3. The extended set of primitive and supercell wave vectors

Let us assume that we have decided to construct the alloy
EBS for a set {�ki} of a chosen pbz. We enforce the macroscopic
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in the EBS construction and discussion is the cumulative
sum,20

S�ki
(En) =

∫ En

Ā(�ki,E)dE, (17)

depicted in the same panels as Ā(�ki,E) with blue (black) lines.
This cumulative sum is characterized by steps of value g(�ki)
whenever an “alloy band” of degeneracy g(�ki
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have performed calculations for all possible nc values between
the two limits—total randomness (nc = 1) and complete
clustering (nc = nmax)—we show only two illustrative cases,
in which the P clusters are of intermediate size 1 < nc � nmax.
Here we should note that, when modeling a disordered A1−xBx

system within a SC approach the composition x takes on only
discrete values, rather than being a continuous variable.

The general trend to be observed when moving from perfect
disorder (nc = 1) to complete clustering (nc = nmax) is the
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We assume the PC eigenvectors |�k0n〉 to be of an analogous
form

|�k0n〉 = u�k0n(�r) ei�k0�r

=
⎡⎣∑

�g
B�k0n(�g) ei �g�r

⎤⎦ ei�k0�r �k ∈ pbz, (A2)

and satisfying the orthogonality condition [Eq. (11)]. We
note that the distinction between the two mappings, SBZ
and pbz, of the reciprocal space is directly reflected in the
two different summations over �G and �g in Eqs. (14) and
(A2). From Eq. (11), using the ansatz (A2) one obtains the
following:

δnn′ = 〈 �k0n|�k0n′〉
=

∑
�g,�g

B∗
�k0n

(�g) B�k0n′ (�g )
∫

d3r ei(�g −�g)�r

=
∑

�g
B∗

�k0n
(�g) B�k0n′ (�g),

or ∑
�g

B∗
�k0n
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