Ordering tendencies in octahedral MgO-ZnO alloys

Mahdi Sanati,¹ Gus L. W. Hart,² and Alex Zunger¹

1 *National Renewable Energy Laboratory, Golden, Colorado 80401, USA* 2 *Department of Physics & Astronomy, Northern Arizona University, Flagstaff, Arizona 86011-6010, USA*

(Received 18 August 2003; published 24 October 2003)

Isostructural II-VI alloys whose components are either rocksalt stable (e.g., CaO-MgO) or zincblende stable ~e.g., ZnS-ZnSe! are known to be thermodynamically unstable at low temperatures, showing a miscibility gap and no bulk ordering. In contrast, we show that *heterostructural* MgO-ZnO is stable, under certain conditions, in the sixfold-coordinated structure for Zn concentrations below 67%, giving rise to spontaneously ordered alloys. Using first-principles calculations, we explain the origin of this stability, the structures of their lowtemperature ordered phases, short-range-order patterns, and their optical band-gap properties.

DOI: 10.1103/PhysRevB.68.155210 PACS number(s): 71.55.Gs, 71.20.Nr

I. INTRODUCTION

Binary II-VI compounds appear¹ largely as fourfoldcoordinated $(CN4)$ zincblende/wurtzite structures $(ZnO,$ ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe) or as sixfoldcoordinated (CN6) rocksalt structures (MgO, CaO, and CdO). Isovalent and isostructural alloys of II-VI constituents are generally thermodynamically unstable, in that their mixing enthalpy, in either the CN6 rocksalt (*B*1) structure or in the CN4 $(B3)$ or wurtzite $(B4)$ structures,

$$
\Delta H_{\alpha}(A_x B_{1-x}C) = E_{\alpha}(A_x B_{1-x}C) - [xE_{\alpha}(AC)
$$

$$
+ (1-x)E_{\alpha}(BC)], \tag{1}
$$

is *positive*.²⁻⁴ Here, α denotes fourfold or sixfold coordinated crystal structure, and $E_{\alpha}(AC)$

functional for \sim 3 \times 10⁶ possible configurations, we identify Mg_3ZnO_4 (DO_{22}) and $Mg_4Zn_4O_8$ as ordered *B*1-like ground-state structures. (5)

are the most stable. To answer this we have parametrized 32 *B*1 total-energy calculations of $Mg_mZn_nO_{m+n}$ structures $(s$ hown as open squares in Fig. 2) into a cluster expansion. Within the cluster-expansion method⁷ one selects an underdictions within 0.3 meV/atom. Although several ''breaking points'' exist, the energetically ''deepest'' structures occur at $x=0.25$ and $x=0.5$. For $x=0.25$, the ground state is a $D0_{22}$ -type structure with lattice constants $a=4.174$ Å and $c=4.179$ Å. For $x=0.50$, the ground state is an orthorhombic structure with lattice constants $a=4.189 \text{ Å}$, *b* $=$ 4.187 Å, and $c = 8.900$ Å. The atomic positions and lattice vectors of predicted ground states are shown in Table III. The common structural motif for these ground-state structures is that they are (201) superstructures. It is known that (201) superstructures have low Madelung energies⁷ and our calculations show that the constituent strain energy along the (201) direction is softer with respect to the other principal directions.

C. Thermodynamic modeling

Figure 2 shows the energy of the random *B*1 solid solutions (solid line), obtained by performing high-temperature (40 000 K) Monte Carlo simulations with Hamiltonian, $E_{\text{CE}}($). The open symbols denote the energies of ordered structures, used as input to the cluster expansion, whereas the energies of the ground-state structures are denoted by solid squares. We see that the energy difference between the stable ordered ground-state structures and the random alloy of the same composition (e.g., $x=0.5$) is rather small (-6.5 meV/ cation), so the order-disorder transition temperature will be well below conventional growth th tol 2s6 1 Tf .443 Tm (s)Tj /F8 1 T0cc e.g., (a) sabsolution temperature will be
(b) 1 or 443 Tm (s)Tj /F8 1 T0cc
(b) 77n48e5.D (~)ss 25Tj /6.0445 1 Tf all
(b) $\frac{1}{2}$

O77n48e5.D (~)ss 25Tj /6.0445 1 Tf al

at high temperatures. The random alloy has an LDA band gap of 2.49 eV at $x=0.5$ (using a special quasirandom structure¹⁷), and hence a bowing coefficient b_{bowing} $= 3.10 \text{ eV}, \text{ where } E_g(x) = (1-x)E_{\text{MgO}} + xE_{\text{ZnO}} - x(1)$ $(x-x)b_{\text{bowing}}$. This value of the bowing coefficient is in good agreement with the value of 3.6 ± 0.6 eV measured recently by Schmidt *et al.*¹⁰ The ordered structure at $x=0.5$ has a lower band gap than the random alloy by 0.39 eV. There is a CN6 to CN4 transition for $x_{Zn} > 0.67\%$, whereas the coherent alloy is *B*1 stable below this composition. If MgO and ZnO can (incoherently) adopt their own crystal structures $(B1 \text{ and } B4, \text{ respectively})$, the alloy is predicted to phase separate.

ACKNOWLEDGMENT

This work was supported by the U.S. D8 0 ACKN