

"electronic additions" (i.e. surface adatoms or vacanpiech that lead to electronic compensation and thus to
revealed that the outer rule tends to be obsered by these

stable and semiconducting flat surfaces. While step-step interaction has noticeable effects on step formation energies, the formation of steps is generally endothermic. There are two commonly observed steps:

motifs, leading to a set of point charges on various surface atoms. For example, Ga has 3 valence electrons, so fourfold coordinated Ga⁽⁴⁾ contributes 3/4 electrons to each of its four bonds. This leads to local charge poutrolity. Planer Go⁽³⁾ is a 3/4 electron depart

4.2. Stability of A stens vs B stens

Acknowledgments

As mentioned in Section 3.4, Heller et al. [5] have measured step energy by way of measuring the kink distribution on GaAs(001)-2×4. Depending on temperature, they obtained an A step formation energy

We would like to thank S. Froyen for many helpful discussions on the subject. This work was supported by the Office of Energy Research (Division of Materials Science of the Office of Basic Science), US Department

include also the corner energies in Ref. [5]). Following Heller et al., one may derive from the calculated kink energy in Section 3.4 the A step formation energy. This gives $28-31 \text{ meV/}(1\times)$. Heller et al. also determined the B:A energy ratio to be 5.6-6. Ide et al. [7], on the contrary, estimated the ratio from measured aniso-

References

- [1] P.M. Petroff, A.C. Gossard and W. Wiegman, *Appl. Phys. Lett.*, 45 (1984) 620.
- [2] A. Gomyo, T. Suzuki, S. Iijima, H. Hotta, H. Fujii, S.