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Abstract 

The orthogonality requirement in either iterative diagonalization or conjugate gradient approaches to the 
single particle Schr6dinger equation/~/~u = E~u leads to an overall N 3 scaling of the effort with the number 
N of atoms. We show that the Lanczos method circumvents this problem even when applied to all occupied 
states. Our implementation shows that the method is stable, exact, scales as N 2 for N around a few hundreds, 
and is thus optimally suited for such mid-size (100 -  1000 atoms) quantum systems. The analogy between 
the basic Lanczos equations and Anderson's localization in a disordered one-dimensional tight-binding chain 
is pointed out and used to gain some insights into improved convergence and stability of the method. For a 
900-atom Si cluster tested here using pseudopotentials and a plane wave basis, the Lanczos method is about 
an order of magnitude faster than the state-of-the-art preconditioned conjugate gradient method using the same 
pseudopotentials and basis set. 

1. Introduction 

While recent developments in computational 
strategies [1] enable first principles electronic 
structure calculations for systems with up to 
100 atoms, rapid experimental advances are 
constantly shifting interest to quantum systems 
with an ever increasing number of  atoms. Ex- 
amples include the > 1000-atom quantum dot 
and quantum wire structures [2], as well as su- 
perlattices and quantum wells [ 3 ]. The effort in 
state-of-the-art/:/~u = E ~  electronic structure 
algorithms scales as N 3, where N is the num- 
ber of  atoms in the system. Recently [4], we 
have demonstrated that one could find exact 
eigenfunctions o f / : / ~  = E~u in a desired "en- 
ergy window" (e.g., E around the band gap of  
insulators and semiconductors) in a linear-in- 
N scaling. This is very useful for energy level 

calculations of  large quantum systems [5], but 
not for total energy calculations that require 
all occupied eigensolutions. Although there are 
several promising proposals for total-energy 
electronic structure method with a linear-in-size 
(N)  scaling of  the effort [6-10],  these are still 
in their formative stages and the cross-over size 
of  their cost with respect to the conventional 
(Na-scaling) methods is yet unknown. Here we 
present a method for finding all exact occu- 
pied eigenstates of  a given Schr6dinger equation 
based on the Lanczos algorithm [ 11 ]. The effort 
scales as N 2 for N around a few hundreds of  
atoms (basis set size around 30 000) and is an 
order of  magnitude faster than the state-of-the- 
art preconditioned conjugate gradient method 
[ 1 ]. Although for large N (perhaps > 1000), the 
Lanczos method could be less effective than the 
currently proposed [ 6-10 ] linear scaling meth- 
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spectrum ("end-of-spectrum states") are the 
first to converge. This is because there is a hid- 
den driving mechanism which amplifies the 
amplitudes of the end-of-spectrum states. To see 
this effect, let's first write ui and ui+~ as sums 
of the eigenstates of/: / ,  i.e, ui = E l  C[ ~l l and 
Ui+ 1 = E l  Cff +1 ~//l" Substituting these into the 
Lanczos iterative equation (6), we have: 

Cff+ 1 1 
- -  f l i + l  [(El - Ei) - fli]c~, (10) 

where, E = ~ t  Et c~ is the average eigenvalue 
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 1 2   a the h o l d  will eventually lead to the violation of the or- 

thogonality (Eq. (7)). This violation of the or- 
thogonality is illustrated in Fig. 2, which depicts 
< ullui > versus i. After i > 180, this overlap 
becomes large. This loss of orthogonality seem 
to have led to the belief [11] that the Lanc- 
zos algorithm breaks down unless one explicitly 
reorthogonalizes ui to all the previous uj's, (a 
rather expensive operation). However, as will be 
shown in section 2.3 below, the Lanczos algo- 
rithm without explicit reorthogonalization does 
work despite of the failure of Eq. (7). 

2.3. Loss o f  orthogonality does not prevent 
f inding accurate eigenstates 

Let us just ignore for a moment  the failure of 
Eq. (7) and go ahead and diagonalize the tridi- 
agonal matrix H T of Eq. (8), finding its eigen- 
states {b~}. Then, {b~} satisfies: 

l c~ib[ l Elb~ f l ibi_l + + fl i+lbi+l = 

for I < i < M  

and 

flMblM_l + aMblM = ElbtM . (11) 

Now, 
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Fig. 1. The  ampl i tude  o f  the  end-of-spect rum states ¢/1 ( r )  in  the  Lanczos wavefunct ion  u i (r). The ampl i tude  increases f rom 
i = 1 to i = 25, then  it decreases f rom i = 25 to i = 50. At  i = 100, ~ul ( r )  is converged. The  next  and  o ther  peaks are 
dupl icates  of  V/1 ( r )  discussed in sect ion 2.5. These  are also indica t ions  of  the  failure of  or thogonal i ty  among  the  different  
ui (r). The  system 
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fluctuations in ai and fli. The  system studied is Si47H52 . 

2.4. Anderson localization in bi 
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Fig. 5. The Number  of converged eigenvalues as functions of the Lanczos iteration index i. Since this system has 120 occupied 
states, most of the occupied states should have already converged around i ~ 1000. The system studied is Si47H52. 

shorter is At, thus the more often it repeats itself. 
This 

converged states only after the new state has 
been fully converged. This is illustrated in Fig. 
4(b). 

Another concern is that with all converged 
states generating their duplicates at a rate given 
by Eq. (13), could it be that after a while, the 
procedure will produce only duplicates of old 
states rather than new states. Fortunately, this 
does not happen, as illustrated in Fig. 5. We 
see that, while the duplicates can account for 
more than half of the total number of converged 
eigenstates, the number of unique converged 
states (without counting the duplicates) in- 
creases steadily almost as a linear function of 
the number M of Lanczos iterations. In the ex- 
ample shown in Fig. 5, there are two slopes: a 
larger slope for the states below the energy gap 
in the spectrum (i.e, the band gap of Si47H52), 
and a smaller slope for the higher energy states. 
Of  course, after all the eigenstates of the origi- 
nal Hamiltonian have been generated, further 
iterations can only produce duplicates. 

Finally, the ultimate test of  accuracy and con- 
vergence of an eigenstate ¢/t is to apply on it 
the original Hamitonian /:/ and examine the ful- 
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fillment of  the Schr6dinger equation (3). This 
check will be used in our following algorithm. 

3. The algorithm for electronic structure 
calculations 

Based on our analysis of  the Lanczos phenom- 
ena described in the previous section, we next 
present our Lanczos scheme for calculating all 
the occupied eigenstates { ~'l (r) } of Schr6dinger 
equation (3). This algorithm will cure most 
problems identified in section 2. The algorithm 
is summarized in Fig. 6, and explained step by 
step in what follows. 

Step (i): start with a randomly selected wave- 
function ut (r) (constructed from choosing ran- 
dom coefficients of  a given basis), and gener- 
ate the Lanczos wavefunction ui (r) according to 
Eq. (6), without any reorthogonalization among 
the members of { ui (r) }. If this is the first sweep 
of steps ( i ) - (v i )  (Nsweep = 1 ), skip the follow- 
ing. If this is not the first sweep - so there are 
NtCot converged eigenstate { ~t (r) } from previous 
sweeps - then orthogonalize each ui(r) to all 
{ ~'l (r)} by subtracting the component of each 
~'l(r) from ui(r), i.e. ui - F_,I < ¢/llui > ~l. 

If  disk space allows, store all generated {ui} 
on disk for later use. If  not, discard the old ut. 

Step (ii): at some Lanczos iteration i = Nt 
(e.g. every 50 or more Lanczos steps), diagonal- 
ize the tridiagonal Lanczos matrix H T of Eq. (8) 
using standard programs (e.g. the LAPACK rou- 
tines ) and obtain the eigenvalues {El (Nt) } with- 
out calculating the eigenvectors. Next, reduce the 
dimension of  H T by one and repeat the diago- 
nalization of H T, finding the set {Et(Nt - 1 )}. 
Compare {Et (Nt)} with {Et (Nt - 1 )}, keeping 
the eigenvalues that have changed by less than et, 
where ct is a desired convergence criterion (e.g. 
1 x 10 -6 Hartree). For eigenvalues that are de- 
generated within et, keep only a single copy. De- 
note these eigenvalues as {E 7 (Nt)}. Then calcu- 
late the number 
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from Fig. 4, most of  the eigenstates have been 
converged far before Nt is reached, so for each 
E~, it is worth doing a few (5 to 10) inverse it- 
erations for different matrix dimensions M (< 
Nt), and examing whether the eigenvalue that 
resulted from the inverse iteration has changed 
from Et (Nt) (within a tolerance limit el, which 
can be much smaller than £t and close to the 
machine precision). Choose the smallest M for 
which E l does not change beyond e j, and denote 
this as Mr. Then, {b~} (which has Mt terms i) are 
the coefficients based on the Mr-dimensioned 
matrix H a- . 

Step (iv): generate ~'t from {b~} and {ui}. If 
{ui} is stored on 

converged eigenstates generated at each sweep 
decay as a geometrical series. 

(2) The Lanczos procedure described 

4. Applications to Si quantum dots 

We now apply the above Lanczos scheme to 
Si quantum dots described at the end of the In- 
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Fig. 7. Calculated total charge density contour plot for 
Si617H316. The contour plot is shown on a [110] cross sec- 
tion at the center of the rectangular box. The Hydrogen 
atoms are on the periphery. The interior Si-Si bonds can 
be deafly seen. 

troduction. The quantum dots studied here have 
approximate rectangular shapes, and all sur- 
face dangling bonds are 
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Table 1 
Time analysis (in Cray YMP cpu seconds) of  the Lanczos method. "cpu for constructing ~ut" denotes the t ime consumed by 
constructing gt t using Eq. (9) in step (iv). "cpu for orth." denotes the t ime consumed by making the ui orthogonal to the 
converged g0 in the other-than-first sweeps. "cpu for diag. and inv. H T" denotes the t ime used to get the eigenvalues of H T 
and to solve the inverse iteration to get the coefficients {b[}. 

Si47H52 Si147Hl16 Si329H204 Si617H316 

num. of occ. states 120 352 760 1392 
FFT grid 32 x 32 x 48 40 x 40 × 60 48 × 48 x 72 54 x 54 x 80 
memory required 6 Mb 33 Mb 120 Mb 360 Mb 
total cpu t ime (sec) 71 471 2804 8986 
cpu for [-lui 61 330 1650 3686 
cpu to construct ~ut 3 50 456 2521 
cpu for orth. 3 46 430 1792 
cpu for diag. and inv. H T 3 30 228 807 
num. of  sweeps 3 3 3 3 

num. of Lancozs iter. 1090 3359 9156 17657 
in each sweep 101 430 1285 1899 

101 151 166 256 

num. of converged states 113 319 661 1246 
in each sweep 6 28 86 125 

1 5 13 21 

cpu of each sweep 59 373 2161 6730 
6 72 567 1975 
6 26 76 281 

Fig. 9. For smaller size systems, the N 2 scaling of 
calculating [-Iui dominates the computing time. 
At N _~ 1000 atoms we find a cross-over of the 
N 2 to the N 3 scaling. Thus this method works 
best for systems with 100-1000 atoms. 

One practical limitation is the run time mem- 
ory. This is caused by the need to store in mem- 
ory all the converged eigenstates {~0(r)}. This 
aspect is the same as the conventional method 
(e.g. conjugate gradient method).  The coeffi- 
cient {b~} (30% of  {~ut(r)}, in terms of memory 
space) can be stored on disk without slowing 
down the speed of the calculation. The possi- 
bility of storing {vl(r)} on the disk depends 
on (i) how rapidly can one retrieve them from 
disk, s p e e d  
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360Mbyte. 
To test whether this procedure is stable, we 

have repeated the calculation of  the largest sys- 
tem Si617H316 using different starting random 
wavefunctions Ul (r) in the Lanczos iteration 
(Eq. (6)).  The two sets of  the eigenvalues 
{Et} show a one-to-one correspondence, so no 
eigenstate is missed. The largest difference be- 
tween the two sets ofeigenvalues is < 1 x 10 -1° 
Hartree. The mean square difference of the 
charge density p(r) (on real space grid r) of  
these two runs is 0.0001%, indicating very ac- 
curate convergence. The sum of  the eigenvalues 
(which is used for total energy calculations) 
differs by less than 1 × 10 -1° Hartree. For most 
purposes, this accuracy is (more than) suffi- 
cient. Although the least converged eigenstates 
has a convergence error ~t (defined in step (v)) 
close to et, most eigenstates have much smaller 
convergence errors, i.e. close to machine pre- 
cision. This and our numerical tests show that 
using a smaller El does not affect much the 
computing time. The orthogonalization among 
different eigenstates ~ut was checked explicitly 
by calculating < ~utl~ul, > for l ~ l'. The largest 
value found for this overlap element is 3 x 10 -5 
and occurs for the least converged eigenstates. 
For most states, however, this quantity is much 
smaller (i.e. close to the machine precision). 

5. Comparisons with the preconditioned 
conjugate gradient method 

We applied the preconditioned conjugate gra- 
dient (PCG) algorithm to the two smallest sys- 
tems Si47H52 and Si147H116, using identical con- 
ditions and numerical techniques as in the Lanc- 
zos method for evaluation of the wavefunction 
~'t (r) and for its multiplication by the Hamito- 
nian/:/.  Also, an identical convergence criterion 
et = 1 x 10 -6, is used in both methods. The 
resulting computing times are shown in Table 
2. We found that the eigenvalues calculated by 
the PCG method exhibit a one-to-one correspon- 
dence to their Lanczos counterparts, to within 
the convergence limit of  1 x 10 -6 Hartree. The 
total charge density p(r) calculated by PCG is 

within 0.0001% of  the Lanczos results. For sys- 
tems larger than 
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Table 2 
Time analysis of the preconditioned conjugate gradient (PCG) method and the Lanczos method. "total num. of PCG iter." 
is the total number of PCG line minimization steps. We use 1 x 10 -6 Hartree as the convergence criterion. "cpu of/ : /¥1" 
is the time of app ly ing / : / to  the wavefunction ~ut, which is a N 2 operation. This step also includes the time of other N 2 
scaling operations 
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