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Abstract 

The orthogonality requirement in either iterative diagonalization or conjugate gradient approaches to the 
single particle Schr6dinger equation/~/~u = E~u leads to an overall N 3 scaling of the effort with the number 
N of atoms. We show that the Lanczos method circumvents this problem even when applied to all occupied 
states. Our implementation shows that the method is stable, exact, scales as N 2 for N around a few hundreds, 
and is thus optimally suited for such mid-size (100 -  1000 atoms) quantum systems. The analogy between 
the basic Lanczos equations and Anderson's localization in a disordered one-dimensional tight-binding chain 
is pointed out and used to gain some insights into improved convergence and stability of the method. For a 
900-atom Si cluster tested here using pseudopotentials and a plane wave basis, the Lanczos method is about 
an order of magnitude faster than the state-of-the-art preconditioned conjugate gradient method using the same 
pseudopotentials and basis set. 

1. Introduction 

While recent developments in computational 
strategies [1] enable first principles electronic 
structure calculations for systems with up to 
100 atoms, rapid experimental advances are 
constantly shifting interest to quantum systems 
with an ever increasing number of  atoms. Ex- 
amples include the > 1000-atom quantum dot 
and quantum wire structures [2], as well as su- 
perlattices and quantum wells [ 3 ]. The effort in 
state-of-the-art/:/~u = E ~  electronic structure 
algorithms scales as N 3, where N is the num- 
ber of  atoms in the system. Recently [4], we 
have demonstrated that one could find exact 
eigenfunctions o f / : / ~  = E~u in a desired "en- 
ergy window" (e.g., E around the band gap of  
insulators and semiconductors) in a linear-in- 
N scaling. This is very useful for energy level 

calculations of  large quantum systems [5], but 
not for total energy calculations that require 
all occupied eigensolutions. Although there are 
several promising proposals for total-energy 
electronic structure method with a linear-in-size 
(N)  scaling of  the effort [6-10],  these are still 
in their formative stages and the cross-over size 
of  their cost with respect to the conventional 
(Na-scaling) methods is yet unknown. Here we 
present a method for finding all exact occu- 
pied eigenstates of  a given Schr6dinger equation 
based on the Lanczos algorithm [ 11 ]. The effort 
scales as N 2 for N around a few hundreds of  
atoms (basis set size around 30 000) and is an 
order of  magnitude faster than the state-of-the- 
art preconditioned conjugate gradient method 
[ 1 ]. Although for large N (perhaps > 1000), the 
Lanczos method could be less effective than the 
currently proposed [ 6-10 ] linear scaling meth- 
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Fig. 1. The  ampl i tude  o f  the  end-of-spect rum states ¢/1 ( r )  in  the  Lanczos wavefunct ion  u i (r). The ampl i tude  increases f rom 
i = 1 to i = 25, then  it decreases f rom i = 25 to i = 50. At  i = 100, ~ul ( r )  is converged. The  next  and  o ther  peaks are 
dupl icates  of  V/1 ( r )  discussed in sect ion 2.5. These  are also indica t ions  of  the  failure of  or thogonal i ty  among  the  different  
ui (r). The  system 
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fillment of  the Schr6dinger equation (3). This 
check will be used in our following algorithm. 

3. The algorithm for electronic structure 
calculations 

Based on our analysis of  the Lanczos phenom- 
ena described in the previous section, we next 
present our Lanczos scheme for calculating all 
the occupied eigenstates { ~'l (r) } of Schr6dinger 
equation (3). This algorithm will cure most 
problems identified in section 2. The algorithm 
is summarized in Fig. 6, and explained step by 
step in what follows. 

Step (i): start with a randomly selected wave- 
function ut (r) (constructed from choosing ran- 
dom coefficients of  a given basis), and gener- 
ate the Lanczos wavefunction ui (r) according to 
Eq. (6), without any reorthogonalization among 
the members of { ui (r) }. If this is the first sweep 
of steps ( i ) - (v i )  (Nsweep = 1 ), skip the follow- 
ing. If this is not the first sweep - so there are 
NtCot converged eigenstate { ~t (r) } from previous 
sweeps - then orthogonalize each ui(r) to all 
{ ~'l (r)} by subtracting the component of each 
~'l(r) from ui(r), i.e. ui - F_,I < ¢/llui > ~l. 

If  disk space allows, store all generated {ui} 
on disk for later use. If  not, discard the old ut. 

Step (ii): at some Lanczos iteration i = Nt 
(e.g. every 50 or more Lanczos steps), diagonal- 
ize the tridiagonal Lanczos matrix H T of Eq. (8) 
using standard programs (e.g. the LAPACK rou- 
tines ) and obtain the eigenvalues {El (Nt) } with- 
out calculating the eigenvectors. Next, reduce the 
dimension of  H T by one and repeat the diago- 
nalization of H T, finding the set {Et(Nt - 1 )}. 
Compare {Et (Nt)} with {Et (Nt - 1 )}, keeping 
the eigenvalues that have changed by less than et, 
where ct is a desired convergence criterion (e.g. 
1 x 10 -6 Hartree). For eigenvalues that are de- 
generated within et, keep only a single copy. De- 
note these eigenvalues as {E 7 (Nt)}. Then 

.• s t e p  (i) I 
I ~ i U i  = 

c N Ntot = 0 Nsweep = 1 

random u i 

generate U i 

H U i-1 " 0{,i-1 Ui-1 I~li-1 Ui-2 

If = 1 Nsweep 

Ui(r) = Ui(r) " Y~l <Wtl ui> ~l//(r) 

if i = NtJ ' 

step (ii) ] diagonalize HT [ {Oq, 13i } ] 
, i  

get Nc converged eigenvalues {E~} 

if N c <  0 .98 [Nocc  -N~o t ]J if Nc > 0 .98 [Nocc  "N~o t 

step (iii) I solve inverse iteration of 
Hm[{Oq,l[]i}] using {E~},  get Nc {b l }  

step (iv) l construct ~(r)  
• l(r) = zi bl ui(r) 

step (v) J check the convergence of %1/l (r) 
by H~( r )  = Ez ~/(r) 

get N c ( N sweep ) converged states ~z (r) 

N tct = N tct "1" N c ( N sweep ) 

J if N~ot < Nocc 

N sweep = N sweep -I- 1 , s ta r t  

if N~o t = Nocc 

Fig. 6. Flow chart describing the Lanczos procedure for 
large scale electronic structure calculation. See section 3 for 
details. 

occupied states, then go to step (iii). If  not, con- 
tinue step (i). 

Step (iii): using {E~(N,)} as the input 
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Table 1 
Time analysis (in Cray YMP cpu seconds) of  the Lanczos method. "cpu for constructing ~ut" denotes the t ime consumed by 
constructing gt t using Eq. (9) in step (iv). "cpu for orth." denotes the t ime consumed by making the ui orthogonal to the 
converged g0 in the other-than-first sweeps. "cpu for diag. and inv. H T" denotes the t ime used to get the eigenvalues of H T 
and to solve the inverse iteration to get the coefficients {b[}. 

Si47H52 Si147Hl16 Si329H204 Si617H316 

num. of occ. states 120 352 760 1392 
FFT grid 32 x 32 x 48 40 x 40 × 60 48 × 48 x 72 54 x 54 x 80 
memory required 6 Mb 33 Mb 120 Mb 360 Mb 
total cpu t ime (sec) 71 471 2804 8986 
cpu for [-lui 61 330 1650 3686 
cpu to construct ~ut 3 50 456 2521 
cpu for orth. 3 46 430 1792 
cpu for diag. and inv. H T 3 30 228 807 
num. of  sweeps 3 3 3 3 

num. of Lancozs iter. 1090 3359 9156 17657 
in each sweep 101 430 1285 1899 

101 151 166 256 

num. of converged states 113 319 661 1246 
in each sweep 6 28 86 125 

1 5 13 21 

cpu of each sweep 59 373 2161 6730 
6 72 567 1975 
6 26 76 281 

Fig. 9. For smaller size systems, the N 2 scaling of 
calculating [-Iui dominates the computing time. 
At N _~ 1000 atoms we find a cross-over of the 
N 2 to the N 3 scaling. Thus this method works 
best for systems with 100-1000 atoms. 

One practical limitation is the run time mem- 
ory. This is caused by the need to store in mem- 
ory all the converged eigenstates {~0(r)}. This 
aspect is the same as the conventional method 
(e.g. conjugate gradient method).  The coeffi- 
cient {b~} (30% of  {~ut(r)}, in terms of memory 
space) can be stored on disk without slowing 
down the speed of the calculation. The possi- 
bility of storing {vl(r)} on the disk depends 
on (i) how rapidly can one retrieve them from 
disk, s p e e d  
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Fig. 9. The total computation times vs. system size for the 
preconditioned conjugate gradient (PCG) and the current 
Lanczos method. The computing times are in Cray YMP 
cpu seconds. The straight lines indicate the N 2 and N 3 
scalings, where N is the size of the system. Note that for 
N ~ 1000 atoms, the current Lanczos method is an order 
of magnitude faster than the PCG. 
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