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Fig. 1 Multistable perceptual rivalry. The fragmented images pre-
sented to the left and right eyes in a can lead to the coherent percepts
shown in b Kovacs et al. (1996). ¢ An example of the stimuli pre-
sented to the left and right eyes in Jacot-Guillarmod et al. (2017).
Gratings were always split so that halves with the same color and ori-
entation could be matched via interocular grouping, but were otherwise

that involves different levels of visual cortical processing by
building a hierarchical neural network model of binocular
rivalry with interocular grouping. Our model captures
the qualitative dynamics of perceptual switches reported
by human subjects in experiments described by (Jacot-
Guillarmod et al. 2017) involving the visual stimuli shown
in Fig. 1c. When presented with these stimuli, subjects
reported alternations between four percepts, two single-
eye percepts, and two grouped percepts that combined two
halves of each stimulus into a coherent whole (See Fig. 1d).
Levelt’s four propositions (1965

randomized across trials and blocks (See Jacot-Guillarmod et al.
(2017) for experimental methods). d Subjects typically reported see-
ing one of four percepts — two single-eye and two grouped — at any
given time during a trial. e A typical perceptual time series reported by
a subject, showing the stochasticity in both the dominance times and
the order of transitions between percepts



of the visual hierarchy. Our model thus suggests constraints
on the interactions between neural populations in the visual
system.

Our study thus shows that more complex visual stimuli
can be used in perceptual rivalry experiments to drive
the development of more detailed mechanistic models of
perceptual processing R3.29412841w10 0 6Fnstraints



2003; Lamme and Roelfsema 2000). However, each level
could also describe multiple functional layers of the visual
system (Sterzer et al. 2009).

First level of the visual hierarchy The activity of each neural






generalized Proposition Il when the grouped percepts
were stronger. When one class of percept is much
stronger (e.g., single-eye percepts), we expect them
to completely suppress percepts of the other class
(e.g., grouped percepts). Percept strengths used in the






while keeping them equal (See Fig. 5b). When grouping
strength, B, is sufficiently high (B >



dominate. Hence, simultaneously increasing the value
of a and 3 while keeping them equal, is approximately
equivalent to increasing the input I. Since the period
of the associated deterministic model decreases as input
strength, I,



Fig. 7 Time series with different mutual inhibition at the upper level.
Each upper panel shows the neural activity of percepts (populations at
the higher level of the hierarchy), and lower panels show inputs from
the lower to the higher level of the hierarchical model; e.g., E1IE
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Fig. 9 Simulation results with feedback from the higher to the
lower level of the hierarchy. Simulations indicate that the model
can capture the key experimental results in Jacot-Guillarmod et al.
(2017) even with feedback from the higher level to the lower level:
a Predominance of grouped percepts increased as the interocular
grouping strength increased; b The average dominance duration of

When population E;(= Ej) dominates, it leads to the
domination of percept 1 (P1). Similarly, when E3(= Ea)
dominates, then so does percept 2 (P2). Alternations in ele-
vated activity between populations E1 and Ej3 therefore
correspond to rivalry between percepts 1 and 2. Hence,
Eq. (1) generalizes existing models of rivalry, and can cap-

single-eye percepts decreased while the average dominance duration
of grouped percepts remained approximately unchanged (when 3 < a
but close to the value a); ¢ The ratio of the number of visits to
the grouped percepts increased as the interocular grouping strength
increased. Here aj = b;j = 0.1 in Eq. (5), with other parameters as
in Fig. 3



another (Hupe and Rubin 2004). In these cases subjects
perceive either a grating or a moving plaid in alterna-
tion (three total percepts: moving to the left, moving the
right and moving upward). Mutual inhibitory, adapting neu-
ronal network models display dynamics consistent with
data from such experiments, suggesting the mechanisms
behind such rivalry may be similar to those driving conven-
tional binocular rivalry (Huguet et al. 2014). This provides
further evidence that the classical models of rivalry can
serve as a foundation for models describing more complex
settings.

Comparisons with previous models of perceptual multista-
bility Our computational model is based on the assumption
that perceptual multistability occurs via a winner-take-all



1999). However, a number of issues remain unresolved. The
question of whether and when binocular rivalry is eye-based
or percept-based has not been fully answered (Blake 2001).
Activity predictive of a subject’s dominant percept has been
recorded in lateral geniculate nucleus (LGN) (Haynes and
Rees 2005), primary visual cortex (V1) (Lee and Blake
2002; Polonsky et al. 2000), and higher visual areas (e.g.,
V2, V4, MT, IT) (Logothetis and Schall 1989; Leopold and
Logothetis 1996; Sheinberg and Logothetis 1997). Thus,
rivalry likely results from interactions between networks at
several levels of the visual system (Freeman 2005; Wilson
2003). To understand how these activities collectively deter-
mine perception it is hence important to develop descriptive
models that incorporate multiple levels of the visual pro-
cessing hierarchy.

Collinear facilitation involves both recurrent connectivity
in V1 as well as feedback connections from higher visual
areas like V2 (Angelucci et al. 2002; Gilbert and Sigman
2007



Chow 2011; Wilson 2003). We then numerically found the
same qualitative results hold for I~ [1, 1.25].

Appendix B: Simulation procedure

To obtain the results shown in the figure, for each given
parameter set we ran 100 realizations of the model for
300 seconds each and computed the dominance durations,
predominance, and visit ratio for each percept. We pooled
all dominance durations of one class of percepts (e.g.,
single-eye percepts or grouped percepts) and computed
its average and standard deviation across occurrences and
realizations.

~ ~ L *,'%".u" R e ' B
e ITA A A MR A A
.07, 08 . 09 _ 1 11 a A na, o LM e =y - -

walnngt ! e —-

Fig. 11 Adaptation rate, K, at the higher level of the hieararchy, and
top-down influence. a The adaptation rate had little or no effect on
the dominance duration of percepts. Parameter values as in Fig. 3.
b Example of top-down influence from only one percept, here P3
(a1 = a2 = b, = 0 and by = 0.5). Top down input from one
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