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tends to result in a regime with higher firing rates and
strong correlations. Two studies in particular have shown
that entropy can be increased by tuning the E/I balance
to the tipping point between these two distinct dynamical
regimes.11,12 However, a more systematic understanding of
how E/I balance impacts entropy is difficult to obtain exper-
imentally because pharmacological manipulations are rather
difficult to precisely control. Moreover, with a few inter-
esting exceptions,15,16 experiments do not vary the numbers
of excitatory or inhibitory neurons. Computational models
offer an alternative approach in which the number of exci-
tatory and inhibitory neurons, as well as strength of excitatory
and inhibitory synapses, can easily be controlled. Previous
computational studies have addressed similar topics but typ-
ically have neglected inhibition12,17 or have not considered
the effects of changing the E/I ratio.18,19 Thus, theoretical
and experimental understanding of the relationship between
the entropy of ongoing dynamics and the balance of excita-
tion and inhibition—mediated by both relative strengths of
excitatory and inhibitory synapses and relative numbers of
excitatory and inhibitory cells—remains unresolved.

Here, we attempt to improve the theoretical understand-
ing of entropy of ongoing dynamics by studying a network
model of binary neurons in detail. We consider how entropy of
the population firing rate depends on the fraction of inhibitory
neurons α and the strengths of E and I interactions, WE and
WI , respectively. We find maximal entropy near the tipping
point between the low and high firing rate dynamical regimes,
as seen in experiments.12 We also find that, for a given choice
of WE and WI , the tipping point can be achieved by adjusting
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iterations of Eq. (8). The entropy is then calculated directly
from Eq. (4).

III. RESULTS

Our primary goal is to determine how the entropy of a
network varies with the relative numbers of E and I neurons
and the relative strength of E and I synapses. We first describe
our results from numerical simulations of the binary model
and then describe results from the theory.

First, we show in Fig. 1 that the system network activity
visits the widest variety of states when excitation and inhibi-
tion are balanced at the tipping point between high and low
firing rate regimes. This is visible in time series [Fig. 1(a)] as
well as empirical distributions P(S) of network activity (based
on 104 time steps of simulation). Correspondingly, entropy H
is greatest along the boundary between low and high firing
regimes (Fig. 2). In the three-dimensional (WE, WI ,α) param-
eter space, this boundary forms a curved surface, which we
henceforth refer to as the maximum entropy surface.

As discussed in Sec. II A, we expect that the transition
from the low to the high firing regimes occurs at the critical
surface of parameters where λ = 1. While we find this is usu-
ally an excellent approximation to our numerical results, the
maximum entropy and critical surfaces differ slightly for high
values of α, and therefore, we will only use the critical surface
as a qualitative guide to the location of the maximum entropy
surface.

To numerically identify the maximum entropy surface,
for each fixed value of (WE, WI), we compute entropy across
a wide range of values of α, finding the value α∗ that maxi-
mizes H(WE, WI ,α). In Fig. 3(a), we show α∗ as a function
of WE and WI . As one might expect, higher values of WE

require a larger number of I neurons (higher α∗) in order
to maintain a balanced network and vice versa. This agrees
qualitatively with the estimate using the critical surface, α∗ ≈
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A second prediction from our work is that size of the drop
in entropy due to a manipulation of inhibition or excitation
will be correlated with the entropy before the manipulation.
This prediction supposes that the cortex is sometimes operat-
ing with a weak-synapse E/I balance where entropy is higher
and the drop in entropy would be greater and at other times is
operating with a strong-synapse E/I balance where entropy is
lower and the drop in entropy would be less.
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