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Abstract 

Renormahzauon theory provides a description of the destruction of mvanant ton for Hamiltoman systems of 1½ or 2 degrees 
of freedom, and explains the self-similarity and the universahty of the structures observed A similar theory for higher dimen- 
sional Hamlltonian systems has proved elusive Here we construct an approximate renormahzation for a Hamiltonlan system 
with 2½ degrees of freedom analogous to the lower dimensional version of Escande and Doveil. Using this operator we study the 
cntlcal surface for the "spiral mean" invanant torus We find that there IS no universal fixed point Instead the renormahzation 
dynamics on the critical surface is a rotation with irrational winding ratio. Implications for the determination of the exact critical 
surface are discussed. 

1. Introduction 

The Ko lmogorov -Am ol ' d -Mose r  (KAM) theo- 
rem ~mplies that sufficiently incommensurate  mvar- 
iant toil o f  integrable Hamil tonian systems or sym- 
plectic maps are preserved for small enough 
perturbations. Alternatively, in many such systems 
one can use "converse-KAM" theory to show that for 
certain parameter  and frequency ranges there will be 
no invariant t on  continuously deformable to those o f  
the integrable case [ 1-4 ]. The set o f  parameters for 
which there exists an invariant torus o f  a g0ven Dio- 
phantme frequency with smooth conjugacy to rota- 
tion and the set for which there does not exist any 
invariant torus o f  that frequency are both open. The 
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destruction ofmvar iant  ton  signals the onset o f  chaos, 
and (particularly for two degrees of  freedom) the loss 
o f  stability. Thus it is o f  great interest to develop 
techniques for studying this destruction. 

In 1979 Greene [5 ] made the remarkable discov- 
ery in embryonic form that the phase space o f  an area 
preserwng map exh~bxts self-similarity in the neigh- 
borhood of  a critical invanant  circle with golden mean 
winding ratio. This observation led to the construc- 
t ion o f  renormal~zaUon operator on the space o f  area 
preserving maps [6,7 ]. This operator has also been 
extended to general winding ratios [ 8,9 ] 

There have been many unsuccessful attempts to 
find a similar self-similarity for the breakup of tor i  in 
higher &mensions [10-15] .  In these cases the au- 
thors studied three frequency systems: etther maps o f  
the toms, volume preserving maps, or four dimen- 
sional symplecuc maps. 

In order to &scover the reason for this failure, we 
will construct an analytic approximation to the re- 
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dent resonances for to, then oJ=p where p is integral 
(remember the length of to is unimportant). A fre- 
quency to is Dzophantme if there is a K # 0  and z> 2 
such that V meZ3 \0 ,  Im tol/ltol > K / I m l  ~. 

When A=B=C =O,  the momenta (u, v) are con- 
stant in time and every orbit lies on a three toms. If  
to(u, v) is incommensurate, the orbit densely covers 
the toms. If  to is Dlophantlne, then the KAM theo- 
rem implies that there is a torus wtth this frequency 
for small values of the amplitudes. We are interested 
in determining the parameters for which such a torus 
is destroyed. 

The technique is to perform a succession of canon- 
real transformations to coordinates that are more 
closely aligned with the incommensurate flow. We use 
the Klm-Ostlund extension of the Farey algorithm to 
successively construct these coordinates. 

3.  K i m - O s t l u n d  tree  

Each of the three phases in V(x, y, z) corresponds 
to a resonance m,.to=0. We beg0n with the three res- 
onances ml = (1, 0, 0), m2= (0, 1, 0), m3= (0, 0, 1 ). 
Each resonance corresponds to a plane in R 3 or a line 
in Rp2; the set of three resonances delineates a cone 
(the positive octant) or triangle, see Fig. 1. The in- 

. . . . .  

Fig 1 Farey triangle construction Frequency ratios are denoted 
by [ ], and resonances by ( ) The frequency shown has the Farey 
sequence to = LL 

tersection of  each pair of resonances defines rational 
frequencies p l =  [1, 0, 0], p2= [0, 1, 0], p3= [0, 0, 
1] The frequencies p, also delineate the cone; it is the 
convex hull of the three vectors. We denote the cone 
by either of the matrices (m / 
M =  m2 , P=(P~,P2,P3) .  

kin3 / 

We assume to is inside the cone, i.e. co, >i 0. 
To construct the Farey sequence for to, divide the 

cone using the new frequency P'=Pl +P2, and corre- 
sponding resonance m ' = m ~ - m 2 .  There is now a 
nght and a left cone PR = (P3, Pl, P'  ) and PL = (P2, P3, 
p ' ) ,  OrMR= (m3, m', m2) t and ML= ( - -m' ,  m3, ml )t. 
Choose the new cone that contains ~0 and repeat this 
transformaUon, dividing this new cone into two. This 
gtves this of 0 TD
1 1 1 rg
0.66 TD
1 1 1p4Tc
0 Tw
(This )  Tj
1 0=7o 0 TD
1 1
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v 

Similarly the elgenvector of R is (0 "2, 1, 0-) 
For the model (1) with A=B=C=O, the fre- 

quency vector for momenta (u, v) is 

o9= (au+ flv, k(pu+ ~,v), 

l[1 - ( a + # ) u -  (//+ y) v] ) ,  

and each resonance m, o9=0 corresponds to a hne m 
momentum space, as shown m Fig 2. Ton w~th ra- 
tional frequency ratio, hence consisting entirely of 
periodic orbits, occur at the antersectmns of the res- 
onance lines. 

4. Renormalization transformation 

Our renormahzatlon is a coordinate transforma- 
tion that focuses in on a regmn of phase space in which 
orbits of a given frequency ratio are expected. Here 
we will define two such transformations correspond- 
lng to the L and R Farey steps. We define a canonical 
transformation to eliminate one of the resonances and 
then transform the new Hamlltonian back to its orig- 
inal form 

Suppose formally that each of the parameters A, B, 
C =O(e ) .  We begin by eliminating the m2 = 
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6. A m p l i t u d e  renormal i za t ion  

The parameter map depends on the wavenumber 
k and the mass matrix through ft. Consider first the 
case when r=O, so that f l=cot (¢/) is fixed. In this case 
there are two fixed points, A = B= C =  0 - the KAM 
fixed point, and the critical fixed point 

2 2 2 
A c -  O-14fl, Bc= O-Sfl' CC= O. 1 i f t .  (12) 

The KAM fixed point is stable. The stability of the 
critical point can be studied by talong the log of the 
amplitude map to give, in terms of a=log(A) ,  
b=log(B) ,  c=log(C) ,  the affine map 

(a) (i 1 b' = 0 1 b + [  log(o- 3) / "  (13) 
c' 0 0 c \ log(o- 3) / 

Thus stability is governed by the linear matrix above. 
This matrix has characteristic polynomial 23-22 
- 1 = 0 (interestingly, this polynomial is not related 
to the spiral mean), so that 

21 = ~  1.465571232, 

)[2,3 =(~--1/2 e +11 a Ameters, of 



422 R S MacKay et al / Physws Letters A 190 (1994) 417-424 

Thus, if we take our model at face value, it predicts 
that a typical one parameter system is not "self-sim- 
ilar" at cntlcahty. Instead properties of the system 
such as the stability parameters of periodic orbits (i.e. 
the residues) are predicted to oscillate wtth rotation 
number of  approximately 2. The amphtude of the o s- 
cdlatlon will depend upon the system studied; in our 
model it depends upon the off-diagonal element in 
the mass matrix (alternatively one can think of  this 
as coming from the wavevectors not being 
perpendicular). 

Indeed, previous attempts to find the cntlcal point 
for a spiral mean torus have seen evidence for these 
oscillations. Artuso et al. [ 10] studied a 3D volume 
preserving map, and found that the residues of peri- 
odic approximations to a spiral mean torus oscil- 
lated, apparently vath period 9. 

Now the true renormahzatlon dynamics need not 
look the same as our approximate model, even if it is 
a very good approximation. This is because no rota- 
Uon is stable to perturbation. Arbitrarily small per- 
turbaUons of a rotation to a tk ted, point s
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pandmg the cosine terms gdves four O ( E 2 ) resonance 
terms in H. We judiciously choose the O(e  2) term in 
S (assuming that the resonance denominators,  
co~+ toy and m=+my 
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